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The resonating valence bond spin liquid model for the underdoped cuprates has as an essential element, the
emergence of a pseudogap. This energy scale introduces asymmetry in the quasiparticle density of states
because it is associated with the antiferromagnetic Brillouin zone. By contrast, superconductivity develops on
the Fermi surface and this largely restores the particle-hole symmetry for energies below the superconducting
energy-gap scale. In the highly underdoped regime, these two scales can be separately identified in the density
of states and also partial density of states for each fixed angle in the Brillouin zone. From the total density of
states, we find that the pseudogap energy scale manifests itself differently as a function of doping for positive
and negative biases. Furthermore, we find evidence from recent scanning tunneling spectroscopy data for
asymmetry in the positive and negative biases of the extracted ���� which is in qualitative agreement with this
model. Likewise, the slope of the linear low-energy density of states is nearly constant in the underdoped
regime while it increases significantly with overdoping in agreement with the data.
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I. INTRODUCTION

BCS theory modified to account for d-wave symmetry of
the superconducting order parameter has provided a solid
basis for a first understanding of the properties of the cu-
prates around optimum and in the overdoped regime. How-
ever, the underdoped region of the phase diagram provides
challenges to such a simple approach. These systems present
many features that have been considered anomalous and are
not part of simple BCS theory. While the subject remains
controversial and very different ideas have been put forward
to understand these anomalies, a recently developed model
by Yang, Rice, and Zhang �YRZ� �Ref. 1� which is based on
a spin liquid resonating valence bond approach, has had con-
siderable success in this direction. It is very different from
the preformed pair model2 where a superconducting gap
forms at a high temperature, the pseudogap temperature T�,
and the superconductivity appears only at a lower tempera-
ture Tc as a result of the onset of phase coherence. The YRZ
model has a central element, an energy scale, the pseudogap
�pg, which is responsible for changes in the electronic struc-
ture of the normal state above Tc. The pseudogap is distinct
from the superconducting gap �sc and the superconducting
state is conceived as forming from this normal pseudogap
phase which is quite different from an ordinary Fermi-liquid
�FL� state. In the YRZ model, the large Fermi surface �FS� of
FL theory �FLT� reconstructs into hole and electron pockets
as a result of the growth in pseudogap at doping levels x, in
the underdoped region of the cuprate phase diagram, with
x�xc, where xc is the doping associated with a quantum
critical point �QCP�.

The model is related but different from other competing
order proposals such as d-density wave formation3,4 and has
the desirable property that, in its final form, it remains simple
and has been successfully applied to the calculation of many

superconducting properties.5–12 Besides a self-energy which
accounts for the formation of a pseudogap on the antiferro-
magnetic Brillouin-zone �AFBZ� boundary, the model has
Gutzwiller factors modifying the underlying band-structure
parameters. These narrow the bands as correlation effects
become more important. Also, a Gutzwiller factor accounts
for the loss of coherence which greatly reduces the weight of
the remaining quasiparticle peak as the incoherent back-
ground increases. These elements account for the approach
to the Mott insulating state which is best understood near
half filling in a localized picture of electron dynamics. The
hopping from one site to another is blocked by a large Hub-
bard U which describes the energy cost for double occu-
pancy. The pseudogap and AFBZ then play a role similar to
a band gap at the Brillouin zone in ordinary band theory but
with essential differences. For example, in YRZ, the bands
are not filled rigidly with decreasing doping but instead un-
dergo profound changes as the pseudogap increases.

Among the properties already calculated and compared
with experiment are Raman,5,6 specific heat,7 optical
properties,8 aspects of angular-resolved photoemission spec-
troscopy, and scanning tunneling spectroscopy �STS� �Ref.
9� including the checkerboard pattern,10 Andreev tunneling,11

and also the penetration depth.12 Each of these properties
show behaviors which cannot be understood in d-wave BCS
nor in it extensions to include inelastic scattering,13–20

anisotropy,21–25 or strong-coupling effects rooted in Eliash-
berg theory.24–26 Among the previously considered anoma-
lous properties that are now understood are the two distinct
gap scales seen in Raman spectra. The B2g peak decreases
with decreasing doping while the B1g scale increases
instead.5,6 The normalized jump in the specific heat drops
rather precipitously as x decreases toward the bottom of the
superconducting dome.7 New structures are seen in the opti-
cal self-energy and the two energy scales found in the partial
optical sum as a function of energy are understood.8 The
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rapid drop in the superfluid density at zero temperature with
decreasing x while the slope of the low temperature linear in
T law is relatively only weakly changed is also shown.12

Encouraged by these successes, here we consider the quasi-
particle density of states �DOS�.

In Sec. II, we present the formalism of YRZ �Ref. 1� for
the electron spectral density in the underdoped regime. It
includes pseudogap formation below a QCP at a doping of
x=xc=0.2. We describe how this energy scale modifies the
electronic structure from the usual large Fermi surface of
FLT to Luttinger pockets. There are two energy branches in
the theory Ek

�, with Ek
− giving a hole pocket and Ek

+ an elec-
tron pocket, the latter only in a restricted doping range just
below xc. For very underdoped samples, only the hole pocket
remains. In Sec. III, we present our results for the quasipar-
ticle DOS with and without superconductivity and also
breakup the results into their partial contributions from each
of the two energy branches separately. We discuss how the
pseudogap alone introduces an asymmetry between positive
and negative biases in the DOS N��� and how superconduc-
tivity overrides this effect and so restores particle-hole sym-
metry at small energies of order the superconducting gap
energy �sc

0 . At higher energy, asymmetry remains. We also
show that modifications in the DOS introduced by supercon-
ductivity which are confined to a range of a few times �sc

0 in
the case of a Fermi liquid extend instead over the range of
the pseudogap energy scale in YRZ. In Sec. IV, we consider
decomposing the total quasiparticle DOS into partial contri-
butions from fixed angle � measured from �� ,�� in the up-
per right quadrant of the Brillouin zone. These partial distri-
butions can display several structures. Nevertheless, upon
examination we are able to define for each direction � an
energy gap associated with a specific peak in the partial
DOS. This peak which is taken mainly, but not always, to
correspond to the smallest energy closest to �=0, is some-
times the superconducting gap peak but can also be a
pseudogap peak. The energies extracted in this way show
considerable anisotropy between positive and negative biases
which is a fundamental characteristic of the model used here.
We find evidence in experiment for this anisotropy and pro-
vide a comparison with STS data. In Sec. V, we discuss the
limit of low bias where the DOS is linear in �. We recover
the FL result with an extra Gutzwiller factor reflecting the
strong correlations in the system. Section VI contains a sum-
mary and conclusions.

II. FORMALISM

The spectral function for the coherent part of the elec-
tronic propagator in the model of Yang, Rice, and Zhang1

takes the form

A�k,�� = �
	=�

gt�x�Wk
	��uk

	�2
�� − ES
	� + �vk

	�2
�� + ES
	�� ,

�1�

where ES
	=��Ek

	�2+�sc
2 �k� are the quasiparticle energies in

the superconducting state with �uk
	�2 and �vk

	�2 the corre-
sponding Bogoliubov amplitudes. In Eq. �1�, the Wk

	 �	

=�� are the weighting factors of the YRZ theory which in-
volve the input pseudogap �pg�k� and do not change in the
superconducting state. They depend on the electronic band-
structure energies �k as well as the umklapp surface energy
�k

0. Specifically,

Wk
� =

1

2
�1 �

�̃k

Ek
� �2�

with �̃k= ��k+�k
0� /2 and Ek=��̃k

2+�pg
2 �k�. In the nonsuper-

conducting state, the energies have two branches Ek
�= ��k

−�k
0� /2�Ek and in the superconducting state, the Bogoliu-

bov weights are given in terms of these by

�uk
	�2 =

1

2
�1 +

Ek
	

ES
	� , �3�

�vk
	�2 =

1

2
�1 −

Ek
	

ES
	� . �4�

In the YRZ paper, the band energies, taken to include up to
third-nearest-neighbor hopping, are �k=−2t�x��cos kxa
+cos kya�−4t��x�cos kxa cos kya−2t��x��cos 2kxa
+cos 2kya�−�p, where �p is the chemical potential adjusted
to obtain the correct number of electrons, through a proce-
dure based on Luttinger’s theorem. The umklapp surface en-
ergy is where �k

0=−2t�x��cos kxa+cos kya� equals zero. Here
a is the two-dimensional CuO2 plane lattice parameter. The
form of the hopping coefficients t�x�, t��x�, and t��x� are
fixed in the YRZ model1 and will not be changed in this
work except to note that t0 enters as a proportionality factor
in these hoppings and consequently all our results scale by t0
and so this parameter can be varied at will. The Gutzwiller
factor gt�x� which appears as a simple multiplicative factor in
Eq. �1� provides a measure of the remaining quasiparticle
strength in the coherent part of the Green’s function. Along
with a second Gutzwiller factor gs�x�, it also enters the band
structure, through t�x�, t��x�, and t��x�, which provides nar-
rower bands as the doping x is reduced toward the Mott
insulating state at half filling. Specifically, gt�x�=2x / �1+x�
and gs�x�=4 / �1+x�2.

For the input superconducting gap, YRZ take

�sc�k� =
�sc

0 �x�
2

�cos kxa − cos kya� �5�

and likewise the same form for �pg�k� with the gap ampli-
tude �pg

0 �x� replacing the superconducting gap amplitude in
Eq. �5�. Both have the simplest d-wave form characterized
by the lowest harmonic having the required symmetry. The
amplitudes in Eq. �5� and equivalently for the pseudogap are

�sc
0 �x� = 0.14t0�1 − 82.6�x − 0.2�2� , �6�

�pg
0 �x� = 3t0�0.2 − x� , �7�

where both are taken to be proportional to t0 and the QCP at
which the pseudogap gap becomes nonzero is xc=0.2, where
the superconducting gap is also taken to have its optimum
value. This last condition can easily be relaxed to have the
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maximum gap at 0.16 instead �as in experiment�.
In Fig. 1, we show how the Fermi-surface contours evolve

with doping. At the QCP �x=0.2� there is no pseudogap in
the YRZ model and the Fermi surface is the usual large open
surface of FLT. As x is lowered into the underdoped regime,
the Fermi surface reconstructs and Luttinger contours of zero
energy emerge. They correspond to either Ek

−=0 or Ek
+=0.

The solutions for the first case give the hole pockets centered
on the nodal direction and these exist for �=� /4 to �h as
indicated in the figure. For the case of x=0.19 but not for the
other values of doping shown, there is an additional electron
pocket �Ek

+=0� located in the region between the AFBZ
boundary �dashed red line� and the Brillouin zone which
extends from �=�e to �=0, where � is an angle measured
from the origin �� ,�� in the right-hand upper quadrant of the
Brillouin zone as shown. In both cases for hole and electron
contours, solutions to the equation Ek

�=0 when they exist
�for a given angle �� always come in pairs. For some angles
however, there is no solution at all. When two solutions ex-
ist, the backside of the Luttinger pocket closest to the AFBZ
boundary �red dashed line� has only a small weight Wk

� as
compared with the front part which is orientated toward the
center of the Brillouin zone for the hole pocket and oppo-
sitely for the electron pocket. Both of these have weight of
order one and this is the piece of the FS which corresponds
to the FL when the pseudogap goes to zero. The backsides
instead go into the AFBZ boundary and have weight exactly
equal to zero in this same limit. As seen in the figure, when
x moves toward the Mott insulating state, the Luttinger hole
pocket becomes increasingly short with �h moving toward
the nodal direction and this is the agency whereby the me-
tallicity of the material is increasingly reduced. The number

of states with significant weighting and zero excitation en-
ergy is reduced. The approach to half filling has a progres-
sively stronger detrimental effect on the dynamics of the
charge carriers due to the increased magnitude of the
pseudogap which has opened on the AFBZ boundary. An
important point to note is that the branch Ek

− corresponds to
negative energy except for momenta forming the hole pocket
while Ek

+ corresponds to positive energies except for mo-
menta inside the electron pocket.

III. RESULTS FOR THE DENSITY OF QUASIPARTICLE
STATES

In Fig. 2, we show the quasiparticle DOS corresponding
to each band separately in frames �b� and �c�, N−��� and
N+���, respectively, with the total N���=N−���+N+���
given in frame �a�. Here, N���� is the sum over the Brillouin
zone of gt�x�Wk

�
��−Ek
��. The double-dashed-dotted black

curve for N−��� gives results for x=0.2 which has no
pseudogap and corresponds to the usual Fermi-liquid band
structure. If to this we add the contribution from N+��� in
frame �c�, we obtain the usual FL result shown as the double-
dashed-dotted black curve for the total DOS in �a�. It extends
over an energy range of order several t0 and has a van Hove
�VH� singularity at an energy slightly above −0.25t0. The
energy scale on which the DOS can vary significantly, how-
ever, is set by the bandwidth except for the rapid variation
around the van Hove singularity but we will not emphasize
this aspect. Returning to the frames �b� and �c� of Fig. 2, the
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FIG. 1. �Color online� The reconstructed Fermi-surface contours
for three values of doping: x=0.10 �brown�, 0.16 �yellow�, and 0.19
�black�, shown in the upper right quadrant of the square Brillouin
zone. The black contours have both hole and electron Luttinger
pockets �located around the nodal and antinodal directions, respec-
tively�. The angles measured from �� ,�� which define the end of
these pockets are �h and �e, respectively. The inset shows the su-
perconducting dome and pseudogap line as a function of doping
defined via �sc

0 and �pg
0 in the YRZ model.
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FIG. 2. �Color online� Density of quasiparticle states N��� in
the pseudogap state as a function of � in units of t0. �a� shows the
total DOS, and �b� and �c� give the partial results from the Ek

− and
Ek

+ branches separately. The shaded yellow region in �b� and �c�
identifies the contribution of hole and electron pockets, respectively.
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areas shaded in yellow for emphasis correspond, respec-
tively, to the contributions for hole and electron Luttinger
pockets. Note, in particular, that the shaded region for N+���
exists only for dopings near optimum which is the only re-
gime for which electron pockets appear. As the doping is
decreased toward the Mott transition, a gap forms in this
band above �=0 and there is a sharp rise in DOS at some
finite frequency above which states are seen to pile up before
N+��� returns to a value closer to its no pseudogap value.
The energy associated with the sharp rise in N+��� can be
identified as an effective pseudogap value, it is different from
the input pseudogap although it is of the same order in mag-
nitude. In fact, the net effect of the input pseudogap can be a
depression which can even fall at negative energies as can be
seen clearly in the composite curve shown in the top frame
�a� for x=0.18. The DOS coming from the negative branch
Ek

− also shows a clear effect of pseudogap formation when
compared with the double-dashed-dotted black curve. We see
a shift of the main van Hove singularity �present in the FL
case� to lower energies, followed by a depression at higher
energies beyond a second relatively smaller van Hove struc-
ture. The position in energy of this second structure can be
taken as a second measure of an effective pseudogap.

In the upper curve for the total DOS, the two scales iden-
tified as due to the pseudogap combine to give a dip in the
FL DOS which initially, for small pseudogap, is confined to
the region of negative energies and is not at the Fermi sur-
face as is often assumed in phenomenological models of the
pseudogap. This dip grows with decreasing x both in range
over which it extends and in depth. For small x it ranges over
a large energy region and becomes a dominant feature in the
DOS which is also greatly reduced around the Fermi energy
�=0. It is important to emphasize that the pseudogap can
introduce significant anisotropy between positive and nega-
tive values of � beyond the relatively mild particle-hole
asymmetry of the starting FL band structure. This is an es-
sential element of the YRZ model which would not arise if
the pseudogap opened on the Fermi surface rather than on
the AFBZ boundary. In this regard Fig. 3 is particularly rel-
evant. It shows our results when, in addition to a pseudogap,
we include a superconducting gap. Because this second gap
opens on the Fermi surface it produces a new total DOS
which is much more particle-hole symmetric about �=0 than
was the underlying pseudogap-only DOS, for energies of or-
der of the superconducting gap. Before emphasizing this im-
portant point further, we note that the opening of the super-
conducting gap has pushed some spectral weight in N+��� to
lower negative energies due to the Bogoliubov coherence
factors characteristic of Cooper pairing. The peak at the gap
at negative energies is quite significant in magnitude.

In Fig. 4, we compare results of calculations for x=0.16
when only a superconducting gap is present �solid red curve�
and when in addition there is also a pseudogap �dashed blue
curve�. For the solid curve, the superconducting coherence
peaks fall symmetrically at �= �0.11 even though the un-
derlying FL DOS has a van Hove singularity which appears
only at negative bias. There is as well a second peak at �
= �0.23 which is the normal-state van Hove singularity
slightly shifted by the superconductivity and now appearing
at both positive and negative biases although its positive bias

image is greatly suppressed in amplitude. More surprisingly
for the pseudogap case, the symmetry between positive and
negative � remains in that there are peaks at �= �0.08 and
�0.12 as well as at �= �0.22 and even at �= �0.30. But of
course the magnitude of each peak in a given pair can be
very different. The asymmetry prominent in the nonsuper-
conducting state has been greatly suppressed by the onset of
the superconducting gap. Finally note that at low bias, the
dashed blue curve and solid red curve agree very well and
the introduction of the pseudogap has had no effect on this
region of energy. We will return to this issue later in Sec. V.

Having just emphasized the restoration of particle-hole
symmetry through superconductivity, we explore next the
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asymmetry which nevertheless remains in the quasiparticle
DOS and which can be traced to the pseudogap. In Fig. 5, the
solid black curve gives the input superconducting gap ampli-
tude �sc

0 �x� as a function of doping from x=0.2 �the QCP� to
x=0.1, close to the end of the superconducting dome for the
parameters used by YRZ. The solid red squares were ob-
tained in the FL calculations based on the underlying large
Fermi surfaces assuming �pg

0 �x�=0 at all dopings. These
points are taken from the energy of the superconducting co-
herence peaks in these calculations and fall slightly below
the input values for �sc

0 �x�. This is expected since the peak in
the DOS is representative of the extremal value of the super-
conducting gap on the Fermi surface rather than in the Bril-
louin zone and these are slightly different. When both the
superconductivity and the pseudogap are present, the peak
structure in N��� becomes more complex. The lowest energy
peaks in the top frame of Fig. 3 are associated with the
superconducting gap. Starting with the most underdoped
case first, solid blue curve for x=0.1, we see suppressed
coherence peaks as compared to their magnitude in the opti-
mum case x=0.2 �black double-dashed-dotted curve�. Also,
the energy at which they occur is considerably less than the
value of the input gap amplitude. We plot these in Fig. 5 as
the solid blue circles and see that they trace a dome but in all
cases fall considerably below the input gap amplitude curve
�solid black line�. These points correspond to the gap at the
edge of the Luttinger hole pocket and are therefore consid-
erably smaller in energy than �sc

0 �x�. In fact, we show as
open red squares, the product of the solid red squares times
cos�2�h� �see Fig. 1� and these agree very well with the solid
blue circles. In all cases, the solid and open green triangles
for positive and negative biases, respectively, are the ener-
gies associated with the second significant or resolvable peak
closest to �=0. These points fall very close to the supercon-

ducting coherence peak energies of the corresponding FL for
x0.16 �the triangles are underneath the solid squares for
x�0.17 in Fig. 5� and are the same for positive and negative
biases �, i.e., we have particle-hole symmetry in this case.
We also conclude that for this range of doping, these peaks
are the primary superconducting coherence peaks even when
the pseudogap is present and further they remain largely un-
modified from the FL �pg

0 �x�=0 case. In this sense for these
cases, the superconducting gap has largely overridden the
effect of the pseudogap. This all changes for x�0.16. In
those cases, the energy of the second peak is quite different
for positive and negative biases and these pseudogap peaks
exhibit a great deal of anisotropy. This second energy scale is
also seen in Raman scattering27 where the nodal B2g geom-
etry probes the superconducting gap scale and the B1g anti-
nodal geometry, the pseudogap. As we have seen here, when
optimum doping is approached, the two scales are found to
merge into a single superconducting gap scale. What is dif-
ferent, however, is that the DOS peak structure can be ex-
ploited to get information on the asymmetric effect of the
pseudogap between positive and negative energies. Our re-
sults in Fig. 5 show that this can be considerable and that the
effect sets in quite abruptly around x=0.16 when only the
hole Luttinger pocket remains.

Figure 6 shows results for the DOS at two dopings x
=0.14 �left frames� and x=0.18 �right frames�. The top
frames compare results for normal �red dashed curve� and
superconducting state �black solid curve�. The yellow solid
shading and blue hatched regions help one to see that our
calculations conserve the number of states between the nor-
mal and superconducting cases as they must. What is clear
from the figure and what we wish to emphasize here is that
when there is no pseudogap, the states lost below the super-
conducting gap are largely recovered just above the coher-
ence peak except for a small shift in the VH singularity
which introduces a slight complication that would not be
present in models with a constant DOS. When the pseudogap
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is included there is further readjustment of spectral weight
introduced by the transition to the superconducting state. The
energy range over which there remains significant changes is
now set by the pseudogap scale. Here we are not emphasiz-
ing the slight complication brought about by the existence of
a van Hove singularity in the underlying band structure cho-
sen in the YRZ model.

IV. DECOMPOSITION OF DOS IN ANGLES IN THE
BRILLOUIN ZONE

We turn next to the decomposition of the total DOS into
partial contributions coming from different angular slices in
the Brillouin zone. Such a decomposition has been consid-
ered by Pushp et al.28 in relation to their experimental STS
results. They effectively decompose the total N��� by writ-
ing

N��� 	 

0

2� d�

2�
N��,�� , �8�

where for N�� ,��, they take the explicit analytic functional
form

N��,�� = Re� � − i�
��� − i��2 − ����2�W��� , �9�

where � is a smearing parameter to be varied to get a best fit
of the data along with the value of the gap ���� and weight-
ing factor W���. In this way, a gap scale ���� can be ob-
tained as a function of �. Inspired by the above, we decom-
pose the full density of states

N��� = �
k

A�k,�� , �10�

where A�k ,�� is given in Eq. �1�, into an integration over the
magnitude of momentum k for fixed angle � in the Brillouin
zone. This gives N�� ,�� directly and results are presented in
Fig. 7. Frame �a� is for doping x=0.12 and �b� for x=0.18.
Twenty six values of � are shown between 45° and 0° as
measured from the �� ,�� point of the Brillouin zone �see
Fig. 1�. The nodal direction �top curves� show small coher-
ence peaks due to superconductivity which are centered
about �=0 and are particle-hole symmetric. At higher posi-
tive energies, we see that there are two more pseudogap
peaks while at negative bias, a van Hove singularity is seen.

In Fig. 8, we show results for Ek
+ and Ek

− as a function of
absolute value of momentum k=k measured from �� ,�� for
several values of angle � measured similarly as the angles
shown in Fig. 1 and used for Fig. 7. Doping was set at x
=0.14. The pseudogap Dirac point falls at �=� /4 and k
=2.45 in units of 1 /a �solid black curves� and this corre-
sponds to Ek

+=Ek
−=0.24 in units of the unrenormalized

nearest-neighbor hopping parameter t0. As the angle � is in-
creased away from the nodal direction, the energies Ek

+ and
Ek

− no longer meet but split and there is a clear gap between
them. Both move down in energy but not by the same
amount. Also, the maximum and minimum corresponding to
a given pair of curves do not fall at exactly the same value of

k. In the above sense, the two van Hove singularities at issue
which define the pseudogap peaks in N�� ,�� of Fig. 7 are
not entirely symmetric. The energies of the Dirac point can
easily be traced as a function of doping. It corresponds to the
point Ek

+=Ek
− which occurs for �k+�k

0=0, i.e., Ek

=��̃k
2+�pg

2 �k�=0 for �=� /4, and the details of the disper-
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sion curves determine the critical value of k	kc. For x
=0.14, this kc=2.45 in Fig. 8 which is somewhat larger than
the value � /�2 which corresponds to kx=ky =� /2. For this
latter point, the dispersion curves of YRZ are particularly
simple and only third neighbor hopping survives. Taking
Ek=0 but using kx=ky =� /2 to evaluate the remaining ex-
pression, provides an approximate estimate for the energy of
the Dirac point Edirac as �4t��x�−�p� /2. This estimate is
shown in the inset of Fig. 8 to be quite adequate and shows
how Edirac moves toward zero energy as x decreases, as is
also seen in Fig. 7 where the pseudogap Dirac point is seen
as the closing of the pseudogap coherence peaks at �=� /4.

Returning now to this Fig. 7, we note that as � is de-
creased toward the antinodal direction, it remains possible to
identify unambiguously a lowest energy peak and the mag-
nitude of the energy at which these peaks occur is recorded
in Fig. 9 as a gap in units of t0 for each angle. For optimum
or even near optimum doping, the resulting curve is close to
a simple cos�2�� curve and represents the superconducting
gap. However, it should be noted that the curves for x
=0.18, 0.17, and 0.16 all show an additional structure be-
tween 10° and 15° and the overall curve does deviate visibly
from a simple cos�2��. This is not surprising since near x
�0.2, the Fermi surface, as we have shown in Fig. 1, has
reconstructed from the large open surface of FLT to Lut-
tinger surfaces �holes about the nodal region and electrons
about the antinodal point� and the partial DOS N�� ,�� has
some knowledge of this fact. Consequently, the extracted en-

ergy scale is not a pure superconducting gap scale. Never-
theless, the distortions from a pure cos�2�� are not large and
the curves show almost perfect particle-hole symmetry �com-
pare the top and bottom frame of Fig. 9 for x�0.16�.

The situation is quite different and more interesting for
low dopings approaching closer to the Mott transition. In that
case, only a Luttinger hole pocket remains as shown in Fig.
1. When superconductivity is not considered, there are zero
energy excitations along the Luttinger contours which are
real Fermi surfaces and these are gapped by superconductiv-
ity. But for angles smaller than �h, no true Fermi surface
exists and consequently, the peaks seen in N�� ,�� �Fig. 7�a��
no longer have their origin in �sc�k� but are related rather to
the pseudogap �pg�k�. This can be easily traced in Fig. 7�a�
for x=0.12. In the nodal direction, the peaks nearest �=0 are
the superconducting coherence peaks and these become more
prominent as the gap opens up. But eventually, particularly
on the positive bias side, they start to lose intensity while at
the same time, the pseudogap peak at higher energy remains
quite intense and it is this peak that must eventually be taken
if we are to characterize N�� ,�� for smaller values of � with
a single energy scale as we are doing here. It is clear that we
need to jump from one energy scale to the other. On the
negative bias side, however, the progression with decreasing
� remains smooth. We always take the large intensity peak
closest to the origin �=0. These facts are reflected in Fig. 9.
In the top frame for x�0.14, we see two very distinct gap
scales: a superconducting one for � near 45° and a
pseudogap one for � going toward zero. The curves have a
kink at an angle corresponding to �=�h, the end of the Lut-
tinger pocket, but otherwise they show a rather smooth be-
havior. On the other hand, for positive biases �lower frame of
Fig. 9� there is a clear jump in the curves as we transfer from
superconducting to pseudogap scale and this is followed by a
progressive drop to lower values as � decreases toward zero
in sharp contrast to the top frame for negative �.

To make clearer that our results for the frequency depen-
dence of N�� ,�� cannot be fit by the simple formula of Eq.
�9�, we have used this formula along with the gaps presented
in Fig. 9 to recalculate a total DOS N��� according to Eq. �8�
with weights W��� set equal to one for simplicity. Numerical
results are presented in Fig. 10�b�. For ease of comparison,
we have reproduced in Fig. 10�a� the full DOS already pre-
sented in Fig. 3 on which our angular decomposition is
based. For small values of �, we see a great deal of agree-
ment between these two sets of figures. Near optimum dop-
ing only the superconducting gap scale is prominent while
for the highly underdoped regime both superconducting and
pseudogap scales are clearly seen. At larger energies impor-
tant differences arise and these have their origin in the failure
of Eq. �9� with a single energy scale to capture all the details
present in the partial densities of states of Fig. 7. In particu-
lar, the van Hove singularity seen on the negative bias side in
the top frame is completely missed in the lower frame. While
this figure speaks to the limitation in the method used to
extract energy gaps from STS data28 it also shows that im-
portant qualitative and even semiquantitative information
can be extracted in this way. Some details are certainly
missed but other important features are quite prominently
seen such as the pseudogap scale and its asymmetry. One
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FIG. 9. �Color online� The energy gap read off the curves for
N�� ,�� of the type shown in Fig. 7 as a function of � in the Bril-
louin zone measured from �� ,��. The top frame is for negative bias
�occupied states� and the bottom for positive bias �unoccupied
states�. Note the isotropy between these two sets of data for angles
around 45° or � /4 �nodal direction� and the large anisotropy at
small angles �antinodal�.
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could improve the agreement between the top and bottom
frames in Fig. 10 by including weights W��� or multiplying
Neff��� by an envelope function, which partially accounts for
the presence of the van Hove singularity present in our
model band structure but this is not our aim here.

In Fig. 11, we provide a direct comparison between our
results for the asymmetry between positive and negative bi-
ases of the derived angular dependent gap and the data of
Pushp et al.28 for the same quantity. Plotted is the ratio of
�−bias /�+bias from our Fig. 9 for x=0.12 �squares� and 0.14

�circles�. Pushp et al.28 show several curves in Fig. S3 for a
range of data taken from several spots on their UD58 sample.
As the negative bias data are fairly uniform, we took points
from along the trend of the data. For the positive bias, there
is a range of values for each angle and so we took the highest
and lowest values to form separately the ratio with the nega-
tive bias data. This is shown as the blue triangles and green
diamonds, respectively. As we wish to concentrate on the
asymmetry, only the data for angles less than 30° are shown.
Due to the expected symmetry for angles in the nodal region,
the data ratio toward the nodal region have been normalized
to one to facilitate comparison with theory even though the
ratio in the data was slightly greater than one. Our procedure
is not entirely rigorous and in the hands of the experimental-
ists there might be a more accurate analysis of the result.
Nevertheless, while the individual curves for �+ and �− are
quite different in shape as compared with our theoretical re-
sults, we find that the ratio shows the same qualitative trend
as theory. There is a significant dip around 15° –20° fol-
lowed by a rise as the antinodal region is approached. This
comparison provides evidence that the pseudogap forms
asymmetrically about the Fermi surface as in our model. In
the inset of Fig. 11, we show results for the DOS in the
resonating valence bond spin liquid compared with UD35
data from Pushp et al.28 �Fig. S4�. We used x=0.11 to match
the Tc reduction from optimum and have added broadening
and a linear incoherent background to provide a better fit to
the data. This linear background does not alter the structures
due to the two energy gaps in the model. The agreement is
good in the low-energy region shown and it again clearly
reveals asymmetry between positive and negative biases.

V. ZERO FREQUENCY LIMIT

We finally turn to the slope of the DOS at �→0 shown in
Fig. 12�a�. In YRZ theory, the superconducting Dirac point
�shown schematically by Fig. 12�b��, on the heavily
weighted side of the Luttinger hole pocket in the nodal di-
rection, is not affected by pseudogap formation. For small
energies �, it is clear from the cone shown in Fig. 12 that the
only excited states available are those near the bottom tip of
the Dirac cone. We can easily show that, as for an ordinary
FL,29 the slope is given by

s =
gt

�v�vF
�11�

with N���=s�. Here, vF is the Fermi velocity at the Dirac
point and v�= ��sc�k�kF

= ��sc
0 /�2�sin�kFx� is the supercon-

ducting gap velocity at this same point. In the inset of Fig.
12�a�, we show results of complete numerical calculations of
the DOS for the case of x=0.14 with both pseudogap and
superconducting gap included �solid black curve� and com-
pare with the results of Eq. �11� �dashed red line�. We see
good correspondence.

Formula �11� is the same as would hold in a FL with two
very important differences: gt and a possible variation in v�

in this model. In Eq. �11�, the Gutzwiller coherence factor
gt�x� carries the information on how much weight remains in
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the coherent part of the Green’s function when correlation
effects are included, with the rest shifted to incoherent pro-
cesses. This factor is a crucial part of our present approach
but does not enter FLT. An important consequence of this
fact is that it reduces the rise in the slope in the highly un-
derdoped regime of the cuprate phase diagram as compared
with a pure FL approach. It provides a factor of 2x / �1+x�
while the gap velocity is proportional to Tc. Pushp et al.28

found in STS data that the slope was nearly constant over a
significant doping range below optimum. Matching their re-
duction from optimum of the Tc of their samples with our
superconducting dome in order to determine the relation to
the doping x used in our model, we plot the slope of their
data normalized to the value at optimum versus x. As there
was a range of values in their data for a particular doping, we
have done our best to indicate this as a point with a brack-
eting bar. Comparison with this data �solid black circles in
Fig. 12� shows that, around x�0.10 which is the doping in
our calculations that corresponds to a reduction in Tc by a
factor of 3 below its value at optimum, the predicted slope
represented by the dashed red curve starts to increase while
experiment does not. This could mean that in reality the
Gutzwiller factor is a more strongly decaying function of x
than the one we have used. Alternatively, broadening will
have the tendency to decrease the slope. However, so far we
are neglecting another important effect associated with the
YRZ model. In this model the gap to Tc ratio 2�sc

0 /kBTc,
which for simplicity we have fixed at a value of 6 in all our
calculations, is known to vary importantly with x. In very
recent work, Schachinger and Carbotte30 have solved a gen-
eralized BCS gap equation with the pseudogap and Fermi-
surface reconstruction fully accounted for and have found
that this ratio changes from its canonical value of 4.3 at x
=0.2 �optimum� to �6.5 or even higher toward the end of
the dome as the Mott insulator and antiferromagnetism is
approached. Accounting for this reduces the variation in
slope between optimum and highly underdoped by �50%,
bringing our calculations much closer to experiment as indi-
cated by the red dotted curve in Fig. 12�a�. The overall
agreement between theory and the data is very good. It is
important to stress that gt�x� provides an important factor in

Eq. �11� which brings theory much closer to experiment than
what one would find in a FL approach and this also is true as
well for the variation in gap to critical temperature ratio.

VI. SUMMARY AND CONCLUSIONS

We have computed the total quasiparticle DOS in the
resonating valence bond spin liquid model1 of the under-
doped cuprates. When superconductivity is not included, the
formation of the pseudogap, which provides a mechanism for
Fermi-surface reconstruction, modifies the underlying Fermi-
liquid DOS in an asymmetric way with respect to the Fermi
energy ��=0�. For small values of the pseudogap just below
the critical doping associated with a QCP, the resulting de-
pression in N��� is confined to negative energies. As doping
is reduced toward the Mott insulating state, the depression
deepens, covers a larger range in energy and spans positive
as well as negative biases but its effect remains asymmetric.
However, if superconductivity is also included, particle-hole
symmetry is restored at lower energies of order �sc

0 �x�, al-
though beyond this range the asymmetry associated with the
pseudogap remains. This effect is traced to the fact that the
pseudogap is associated with the antiferromagnetic Brillouin
zone rather than the Fermi surface where the superconduct-
ing gap opens.

One can trace peaks in the total quasiparticle DOS which
are, at optimum doping and just below, coherence peaks due
to superconductivity but these evolve for x�0.16 into
pseudogap peaks which are distinctly different for positive
and negative biases. This asymmetry is an intrinsic part of
the YRZ model and can be used to test its validity. We are
also able to trace a second set of peaks associated with the
superconducting gap which however originate from the end
of the Luttinger hole pocket at an angle �h in the Brillouin
zone. In the heavily underdoped region of the phase diagram,
these peaks are the only ones that can be identified as due
purely to the superconducting gap. These signatures are rela-
tively weak, however, as found in, for example, the experi-
ments of Boyer et al.,31 in comparison with those seen in an
ordinary d-wave BCS superconductor. As a function of dop-
ing, the energy corresponding to these coherence structures
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follow the dome associated with the critical temperature al-
though the scale of the effective gap involved is reduced.

When the total DOS is decomposed into partial contribu-
tions from each angle � in the Brillouin zone separately,
N�� ,��, it is found that at some angles N�� ,�� can show
complex behavior as a function of energy � and even display
several peaks. Such distributions cannot be modeled by the
simple function of Eq. �9�. Nonetheless, we find that we
could identify, in a fairly unambiguous fashion, a single peak
in these distributions which was both close to the origin �
=0 and had significant amplitude. This provides a single en-
ergy scale for each direction �. At angles near the nodal
direction, this scale is associated with the superconducting
gap but as � is decreased it progresses into a peak associated
with the pseudogap energy. In some cases the transition from
one scale to the other is smooth while in others it can be
abrupt and also somewhat ambiguous. What is found is that
the superconducting gap peak at low energies rapidly loses
intensity while the pseudogap peak at higher energies is quite
intense and so dominates over the lower energy structure and
thus must be chosen as characteristic of a single gap scale for
this angle � in the Brillouin zone. This gap can however
differ considerably in size depending on the sign of the bias
involved. For energy below the superconducting gap scale,
there is little asymmetry but this changes radically as the
antinodal direction is approached in the highly underdoped
regime where the pseudogap is probed. Our findings have
implications for the analysis of STS data when one wishes to
extract directional information from such experiments.28

Comparison with the data of Pushp et al. for both N��� and

�−bias��� /�+bias��� shows indeed an asymmetry in the DOS
which is in qualitative agreement with the YRZ model.

Another result is that the zero energy slope of the DOS is
importantly reduced from its FL value in YRZ theory be-
cause of the appearance of a Gutzwiller factor gt�x� which is
a rapidly decreasing function as x decreases and represents
the reduction, due to correlation effects, of the coherent part
of the charge-carrier Green’s function. This factor can par-
tially compensate for the rapid increase in slope that would
occur due to the appearance of the gap velocity v� in the
denominator of the expression for the slope in ordinary BCS
theory. However, this factor is modulated by a rapid increase
in the value of gap to critical temperature found to be the
direct consequence of an increase in the pseudogap in the
theoretical work of Schachinger and Carbotte.30 Without
these two effects there would be a serious conflict between
theory and the experimental results of Pushp et al.28 who find
a slope which remains fairly constant in the underdoped re-
gime. While a comparison with the existing data and YRZ
predictions gives qualitative agreement, there are indications
that the Gutzwiller factor gt�x� and/or the gap to Tc ratio may
in fact vary more rapidly with decreasing x than indicated by
theory.
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